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THE MIXED MODE CRACK PROBLEM IN A

NONHOMOGENEOUS ELASTIC MEDIUM 1

b.

Noboru Nonda 2 and F. Erdogan

Lehigh University. Bethlehem, PA 18015

ABSTRACT

In tllij- paper a :anhoo e's elastic medium containing a crack arbitrarily oriented

w\ith respect to the directior. of property gradient is considered. The problem is solved under

plane strain or generalized plane stress conditions. This is a highly simplified version of a class

of physical problems that may arise in fracture mechanics studies of ceramic coatings,

metal/ceramic compos-itez- and interfacial zones with continuously varying volume fractions or

graded properties. The main results of the paper are the calculated modes I and II stress

intensity fctors. Among the questions studied are the effects of the material nonhomogeneity

constant, the crack orientation, the loading conditions, and the Poisson's ratio on the stress

intensity factors. Briefly discussed are also the stress state near the crack tip and the crack

opening displacement.

INTRODUCTION

Heterogeneous materials or various forms of composites have always been widely used in

technological applications. These materials are generally designed in such a way that certain

physical bulk properties of the medium are optimized. From a viewpoint of mechanical

functioning, in practice most failure processes such as, for example, corrosion, wear, and

fatigue appear to be surface related. Thus, to a certain extent many of these failures can be

controlled by controlling the material properties near and at the surfaces. In some cases a

relatively simple surface treatment would be sufficient as, for example, in surface hardening to

prevent wear or in introducing residual compressive stresses to the surface to prevent fatigue

1 This study was supported by NSF under the grant MSM-8613611, by the Office of

Naval Research under the contract N00014-89-J-3188, and by Sumitomo Metal Industries,

Ltd.

2 Permanent ýtddr-ss: Si.mi:omo Metal Industries, Ltd., Amagasaki, Japan.
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crack initiation. In many other cases, however, a protective coating with a more resistant

material may be needed. As some examples for such applications one may mention the

thermnal barrier ceramic coating of combustion chambers, engine blades and other components.

coating of machine tools against wear. coatings used for protection against corrosion, and ion

plating of parts by very low yield materials (such as gold or silver) to reduce friction.

In designing various coatings. in addition to their expected physical performance, their

mechanical reliability as influenced by such failure related factors as cracking and debonding

must also be taken into consideration. To a large extent the resistance of the material to such

failures can be influenced through processing techniques (for example, by controlling the

sub~trate temperature to influence the residual stresses, and by controlling the degree of

mixing in plasma spray coating or in ion plating to influence the ductility of interfacial zones)

fee Batakis aný Vo\oan. 19.5. and Houck. 1937). It is at this point that influencing material

propertiEs through tailoring the composition as well as controlling the processing techniques

may be a practical option. It has been shown that certain strength related properties of

cerainic coatings can be improved by layering the interfacial zone going from metal rich to

ceramic rich compositions. For example. in joining tungsten to zirconia by introducing four

intermediate layers, that contain 80/20. 60/40. 40/60 and 20/80 percent W/ZrO2 , respectively,

it wa- shown that the peak value of the residual stress becomes approximately one-sixth of

that obtained from direct W-ZrO 2 bonding (Hirano, et al., 1988).

The next logical step is, of course, the processing of fully tailored materials and

interfacial zone- with predetermined continuously varying volume fractions. Advances in

powder technology and surface chemistry in recent years have indeed made it possible to

develop such nonhomogeneous materials (or functionally gradient materials) having metal and

ceramic constituents (Hirano, et al., 1988; Hirano and Yamada, 1988). A different type of

problem in which one would have to consider the material as being nonhomogeneous would be

certain thermal stress problems. If the thermo-elastic constants are significantly dependent on

the temperature and if the temperature variation in the medium is sufficiently high, then for

realistic modelling and analysis the material has to be considered as being nonhomogeneous.

Fracture toughness and fatigue crack growth characterizations of the nonhomogeneous

materials reqire the solution of certain standard crack problems. The mode I plane strain

problem for an infinite nonhomogeneous medium (that is, the case of 0=0 in Fig. 1) was

considered by Delale and Erdogan (1983). who showed that the relative dependence of the

stress intensity factors on the nonhomogeneity constant may be quite significant. Other crack

problems involving various forms of ma-eriai nonhomogeneity wrc considered by Kassir

(1972'. Dhaliwal and Singh (1978), Gerasaulis and Srivastav (1980), Erdogan (1985). and

Delale and Erdogan (1988a. 1988b). In this paper, we consider the generral mixed mode plane
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strain problem for an arbitrarily oriented crack in a nonhomogeneous medium. In previous

studies it was shown that the effect of Poisson's ratio. v, on the stres intensity factors is not

very significant. Thus. in this study. too. v is assumed to be constant.

FORMULATION OF THE CRACK PROBLEM

Consider the plane elasticity problem shown in Fig. 1 where the medium contains a

finite crack on y=0 plane and has a shear modulus #u defined by

Pix 1 ) = Poe Pix.v• = Poe (1)

______ tane
S. =2 (2),I -tan", , 1-!tan20

po and 6 being material constants. By observing that K=3-v for plane strain and t = (3-
P),/ 1-v) for plane stress. and hence

3-,N J X -- .y

A(x~y' = ý-1 Poe (3)

Ihe Navier's equjations for the elastic medium may be expressed as

L)2 uy - xu + (-1)LU +(-

- 3t3-K. = 0 ,+ 2. ±2 x2 + 8uO
8 2 Ox 0 V X)a cOx

(K•-1) !O2V~o-- 5?•i-)•y + 2-- yO'U + -,(3"',)L~U + '3('K'l)oy• + '6(0C1)L

+ ý(K+1)L.- = 0 (4a.b)

where u and v are respectively the x and y ccomponents of the displacement vector. After

separating the solution of the uncracked medium subjected to the prescribed external loads.

the perturbation problei. would have to be solved under the following boundary conditions

and self-equilibrating crack surface tractions p, and P2:
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o'yy~x.+O) = Oyy(x.-0) . o'xy(x.+O) = CXY(X,-O) (5a.b)

%'(x.+0)-v(x.-O) = 0 . Ix!>a: oay(x.+0) =pl(x" Ixl<a .(6a.bj

u(x.-rO)-u(.x.-0) = 0. IxI>a. aXY(x.---0) =P 2 (x) , xia . (a.b)

By expressing the solution of (4) as

= ( - J V(y.o)e-'Q do .(ab

wve find
4 11Vj 4 Fjaen-y (aU(y--o) S m~ F.(Q )e * ~~)=~ .oe ,(a

j=1 J -

where F1 ,.... F4 are unknown functions, nl1 . n,4 are the roots of

n4+ 2--d + +~~--3 -± + 32 -3n 4-o(2-3 )

+ 0 2 (0 2±2ia3-.32 +1- 2 3~-) 0 ,(10)
PC+1-

and Ml, . 'M 4 are given by

It can be shown that the characteristic equation (10) may be expressed as follows:

[2-tack4j2+ ý-- (cy -u-n) 2 =0 .(12)

From (12) it then follows that

-ý £ 6j 2 ±4(a 2 +1a1) - 6 t 1
2 +4(a 2 +i06 2 )

2, 2 2 + 2
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2 2 2 2.i.

11 n 43p + (13a-d'

-13 h- - 3- 1*-

Since u and v must vanish for x 2+Y 2 _x. from (9) and (13) it follows that

F3'(=1 l4'(k = 0 > v 0 (15a.b;

F = F2''= 0 < y 0 (16a.b)

BYv u!ý i hie fuI k L z -k f rom (,1). (9). (15) and (16) we obtain

X) (-1;
C~yx.Y x L- j (2+)--:A jxpný)ep-ixd, (i7)

j=L

where C=1 for y>0 and C=3 for y<O. If we now substitute from (18) and (19) into the

homogeneous conditions ( 5). we find 

2 ab
F3 = R1 Fj+R 2 F 2  , F 4 =R 3 17+ R4 F 2 (0a

where the known functions R11 (a).R..1 4 (a) are given by

R 1 (01) = {(n1 4 -mj)[(1l-K)njn 4 +(3-pz)a 2 ] +ia(n 4 -nj)[1+pK-(3-oc)m1M 4 I}/RO

R2 (0a) = {(m4 -m 2 )[( +K)n 2 n4 +(3-Pc)a 2 ] +ic(n 4 -n 2 )(1+#c-(3- K)m 2 M4 ]}/Ro
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R 3 (n) = (nm3.ni,)Y( 14+K)njn 3-i,3-KP3a 2 ,, ji ak'n3nj'Iý-(3-)m1m3!}/RO

R")= - {ni-iii12p. 1-K)n 2 n341 3-Ku ý 2 iakn3-1), c(.3-K~m~n~1}/R

FLO' a) = n 4-113  I-K)n 3 n4-t(3-K)a 2 -+-ic(n -n 3X1I--K-(3-pc)n 3 114 ' a21-.e

The two remaining unknown fUnctions F 1 and F2 are determined fron- the mixed boundarY

cconiditions (.6) and (7t.

THE INTEG-R.Al. EQt'ATIONS

To reduce the pro!Aen, to a ofie 0 integral equations we introduce the following niew

g1 (X) = 7uix.-O.-UX-O) ;x <a

ax

By stubstitutine for i. ai~d vfrom the results found in the previous section and inverting the

Fourier integrals, from, *22. !t may be shown that

[f 1 t~d i -<i f 1 -iof 41 )Fj -T- (fl 2 -inf4 2 )F 2 1/(4Ro)

N

- e g k T e Ot = 1 {- 1-.-)f -1 +-in(3- Pf 3 1 1F 1 + -I + K)f 2

-in: 3-Kf 3 -- 4RO (23a.b)

w~here

=~ n3 M4 M,(n 4 -n, i-n 4 m 3 m,(n,-n3 )+njm3 M4 (n 3 -n4 )

f= m4 M (.n4 -n i ý-.- 3 m,(nJ- n3 )+ým3 M4 (n 3 -n4 )

n ni 3mýn4 nY m4 n~n 3 )-J-n m (n 3 -n)

=~ m3in 4 -n I ý-.- 4 (n j- n3) -r- mi(n 3 -n4 ) . j=1.2. (24a-d)



Equations (231 and (24) give the unknown functions F, and F2 in terms of g, and g2 - On the

other hand, by substituting from (18) and (19) into (6b) and (7b) we find

2-L n y-iax

yira -+1 1 -iam A+±nj(2pu-,,-\)\F (o)e do = pl(x) . !xý<a

limr E Jn 1" uinj-iaiF (u en do = p2 (x) , Ix1<a (25a.b,

Nowý. solving i23,I for F, and F2 . substituting into (25). and from (22). (6a) and (7a)

observing that gj t 1=0 for t'>a. we obtain the following integral equations:

Sh -axv.t )gj't )dt - e p .(x) IxI<a . k1.2 (26)

\\ h prr

h kx.(xv, = lkjýy.u)e t-X)do . k=1,2- j=1,2 , (27)

and the knowu functioni\s l\'kJ are given in tike Appendix. Since the conditions %j(t)=0 rather

than ,6at and (6b! are used for ;t>a in deriving (26), the integral equations must be solved

under the following single-valuedness conditions:

fa git)dt = 0 j=1.2 - (28)

In order to determine the possible singular behavior of (26). the behavior of the kernels

hkj, (kj=1,2) at x=t and y=0 needs to be examined. For this, it is sufficient to determine and

separate those leading terms in the asymptotic expansion of K, as jal--o that would lead to

unbounded integrals. From the expressions of Kkj given in the Appendix it can be shown that

in the asymptotic expansions for a--• the only terms that would give unbounded integrals

are

o(y.n = K (ol01 =, _e- . (29)
12 21 2i '

Substituted into (27). these terms give Cauchy type kernels. The next lower order terms are

of the form 1/I&o and give at most logarithmic kernels, logjt-xj which are square integrable and

may be treated as Fredholm kernels. By adding and subtracting the asymptotic values given
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by (29) to and from Kki in (27). and by evaluating the integrals involving the leading terms.

(26) may be modified as follows:

f f -i- k 11px.t)gj(t)+k 12 (x.t)g 2 (t)]dt = 'r(1+K pl(x)-a' - 2p(x.O0)(. x~

["[•t) - k2 1 (x.t)gj(tu-k 2 2 (x't)g 2 (t)]dt = 7 P2 (X)+ IxI<a (30a.b b

-a 2/.A(x.OU )

where

k 1 1 (x.t = h1 1 (X.O.t) k2 2 (x.t) = h 2 2 (x.O.t.

k2(, = J X 12(O'u-)K 1 2 X(O'.)'e io(t'x)do

k 2 1(x.t, = { rI 2 1 ( 0.i )_-K2 1 X (0.(Ireio(t-X)do (31a-d)

SOLUTION AND THE STRESS INTENSITY FACTORS

To solve the system of integral equations (30) we first define the following normalized

quantities:

s=t/a. r=x/a. g,(t)=f,(s). k1u(xt)=Luý(rs). pi(x)=pi(ar), (ij=1.2). (32)

Then. for example. (30a) may be expressed as

I fl ,f2(s) 2 o

-1L-- ~s-sd 2(arO) pl(ar), IrI<1 (33a)

Noting that the fundamental solution of (33a) is (1-s2)"1/2, the unknown functions f, and f2

may now be expressed as

0C AnTn1 (s) cc BnTn(s)
f(s)=f2(s) (34a,b)

n=O ý1-s 2 n=0

where Tn is the Chebyshev polynomial of the first kind. From (28), (34) and the

orthogonality conditions of Tn(s) it may be seen that

A0 =0 , B0 =0 . (35)
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Thus. by substitutitig from. 34 into (33, and by using the properties

l p Tn(s d-) S-1 • = ~ ~(r--• Nr2--• 3,

ý-r -s 2r - r 2_1 )
Fr l r!>l

ifrl

TT

B, BrL•.:r- L * 1 ir.si -Bn L12r,s)] Tn(s)ds
=,-i 2

- i-,• ,, 1 , ar
Pv• ar.O

2pia r.0 r r<1

X r-- -\-L 1  Tn(s)L= AL .1. 1 AL21 r.s) -t BnL 2 2 (r,s)] ds

! -, P 'ar.& * ' 1 p (37a.b)
2pi ar.O ý

where Ln(r) is the Chebyshev polynomial of the second kind. Note that the integrals in (37)

are the Gaussian type and the solution may be obtained by truncating the series and using an

appropriate collocation in r.

the strps- intensity factors at the crack tips a and -a are defined by

-~ .4a ~(xO 2(a) =lim ý2(xa 'YX
kla) = lia (2(x-a) ayy(X.0) O'(X,)

k,(-a) = lim- f-x-a) a'yy(x.O) . k (-a) = lim ,•2(-x-a) oxy(x,O) .(38a-d)
x -a " ( X _ -a

To evaluate k1 and k2 we observe that equations (25). or (30) provide the expressions for

ayy(x.0) and axy(x.0) that are valid for !xl>a as well as Jxj<a. Thus, by using (36), and

replacing pl(x) by ayy(x.0) (for Jx>a). from (33) it may easily be shown that
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k1 (a) - .m2(x-a) Yyy(x.O) = lim -4 I2(r-l) yy(ar.O)

Lr' '2 n'------- 2P(ar.O)[ B,(- (r--f-39-=~~~~~~ lira F-j•(-1 (r)] . r>a (9
r-1 -7n IrTr27

where 1 I(r) representt- all other bounded terms. Taking the limit in (39) we find

-2,a.0 n X
k,(a) = ", i-K n- B (40

_2j•• a.O,a -- An
k•,:a~~ ~~ = -- --

= *aý = i7a Bn

= a I-K n=(1B,

k2 a' -aI= Na - ^ n- -1 I )nAn (41a-c)
n=1

IH ES L LI'

ine main results of th,- study are the stress intensity factors that are obtained from

040 and (41, after solving equations (37), and are given in Tables 1-7. Referring to Fig. 1 we

obsere that the half crack length a is the only length parameter in the problem which may be

eliminated by suitably normalizing all relevant quantities (see, for example, Eq. 32). The

exponient ý in pkxj)=poexp( 6xj) is the measure of material nonhomogeneity and appears as

the nondimensional constant a6 in the results given. The angle 0 defines the orientation of the

crack with respect to the direction x, of the material property gradient. As physically

expected, for 0=0 the integral equations uncouple and the crack problems corresponding to

mr .es I and II loading conditions can be solved separately. For 0•0 the integral equations are

always coupled regardless of the loading conditions. Tables show the stress intensity factors

k. and k2 in normalized form. The basic definition of k1 and k2 are given bY (38). The

normalized stress intensity factors are defined by

k, z -a) = k,(T-a)/(P•i) (42)
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where P represents. in each case, the amplitude of the crack surface traction. Referring to

(6b, and (7b). the following tractions were used in the examples given by the Tables:

p2 (x) = 0.plx = (-U. -•x/a . -ox 2 /a 2 .- 'x 3 /a 3 , . (43;

PjIX) = 0 . px, = (-7 .- 7.x/'a .- 2x2/a .2r~x3/a . (443

For crack surface tractions that are reasonably smooth functions of x. the stress intensity

factors may be approximated by a suitable superposition of the results given by (43) and (44).

It 3hould be pointed out that in nonhomogeneous materials the external loading conditions in

many% cases may be modelled by prescribing displacements rather than tractions. The two

practical cases that may be considered are the "uniform strain" and 'bending" applied to the

medlaiv, a \a, ,rom the crack region. It will be assumed that the displacements are prescribed

in the pianes parallel to the direction of the property gradient. x1 in such a way that

•I~liXj.=:-_-% cc¢

'•y(yXl i = - = ( .\! (45a.b,

By oberving that p=poexp,'xi) and xi=xcosO+ysinO. in the perturbation problem the crack

surface tractions corresponding to (45) may be expressed as

tXcos9 3

= SPo oe6COSqe cos2 9

=Po fx.excososin~coso : (46a.b)

C'xy!X.0 += 1--o'yyx.O, = - i- 1xe •CScos3B

Urxy(x,0) = 1-• •.le1 XC°Ssin~cos28 . (47a,b)

where, depending on the constraint of the medium in z direction,

Eo . for plane stress.8/--° _-o • (48)

1+Kc
Eo1 1-v2 ) 2 for plane strain

If the solid is uniformly stressed in x1  direction (by prescribing u 1  or

-12-



,)Uo). the corresponding crack surface tractions may be shown to be

0'yy('x.01 = -aosin 2 v . c'xyOX.0) = -cosingcos9 , (49)

which, for a given crack orientation 9. are constant. Thus, the solution for the loading

conditions (49! may be obtained by a proper superposition of the results found by using '-13,

and 144 ).

Table 1 shows h[e effect of a6 on the stress intensity factors for the two limiting crack

orientations. 0=0 and b=-r,i2 under a uniform crack surface pressure Co. For 9=0 the crack

results obtained are e.--entiall. the same as that found by Delale and Erdogan (1983). For

-/'2. x-0 is a plaILe of svmmetry. the crack problem is one of mixed mode. and the mode II

component becomes quite significant for larger values of a&. For the uniformiy pressurized

crack more detailed re.-_u!!, are shown in Table 2 where the angle 0 is varied between 0 and

7r/2. The results need tu be examined rather carefully if one is interested in the fracture

initiatior, at the crack tip-. For example, one surprising result shown by Table 2 is that the

maximuni values of k1 and k2 do not generally correspond to the limiting crack orientations

0=0 and 0=.-./2. This may be seen somewhat more clearly from Fig. 2 which shows the

variation of the stress intensity factors with the angle 0 for a6=l. Also, the values of 0

corresponding to maxinium stre-s intensity factors seem to depend on ab.

For a quick assessnient of a possible crack growth initiation, it is generally sufficient to

examine the amplitude and t he direction of the maximum cleavage stress a at the crack tips

tsee Erdogan and Silt. 1965). Given the stress intensity factors k1 and k2 , the "cleavage"

stress rr in the small neighborhood of the crack tip may be expressed as

2 30
a Ir.c; 'k - kCO- 2~ 2 k ksint6]cos 2(00-_! -71 1 2

where (r,o) are the polar coordinates at the crack tip and o is measured from the x axis.

Generally the hypothesis is that the crack initiation would be radial in a direction 0*

perpendicular to the local maximum cleavage stress opmax obtained from

o (r') 3 l- cos 2- [kisino* + k2 (3cos¢*-l)] = 0

a00(r.o* > 0 (51a.b)
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and at a value of the load level determined by

a (r.o*) = (k 1cos2 , k2 sino ) ,k- = -2
-Q 2r 7A 7 '2-rr

where KIC is the (locabI critical stress intensity factor of the medium. In studying the fracture

initiation from an existing flaw in brittle and quasi-brittle nonhomogeneous materials, two

additional points need to be made. The first concerns the angular distribution of the

asymptotic stress state for small values of r. It appears that these expressions (such as (50))

for a nonhomogeneous medium are identical to that of a homogeneous medium provided near

and at the crack tip the elastic properties of the medium are continuous (but not necessarily

differertiable) functions of the space coordinates (see Delale and Erdogan., 1988a). The second

point i. that. even though the material is assumed to be isotropic with respect to its fracture

resistance, the resistance parameter K IC is expected to be a function of the space variables.

KIC may be determined from standard fracture toughness experiments by using a series of

homogeneous specimens covering the complete range of material composition for the

nonhomogeneous medium under consideration.

For a fixed value of ab=1 Table 3 shows the effect of loading conditions and the crack

orientation on the normalized stress intensity factors. It may'be observed that under certain

individual loading conditions the mode I stress intensity factor k, could be negative, implying

crack closure. Such solutions are. of course, not valid and can only be useful in a superposition

that gives a positive resultant ki.

In the solution given effect of the variation of the Poisson's ratio V is assumed to be

negligible. Analytically. it is difficult to verify this assumption. However, one can solve the

problem for various different values of v and compare the results. This is shown in Tables 4

and 5. Table 4 shows the effect of v on the stress intensity factors for a6=0.25, 0-=r/2, and

for uniform crack surface tractions -ao and -ro. The maximum difference observed was 2% in

k I under uniform crack surface pressure ao. The difference for other loading conditions (which

are not all shown in the table) was somewhat smaller. For 0=0 similar results were found by

Delale and Erdogan. 1983. The effect of v is, however, more significant for greater values of

a6. For example, the same calculations as Table 4 were repeated for a6=2.5 and the results

are shown in Table 5. It may' be seen that the difference in k, obtained from 0.05<_v<0.45

may be as high as 157. On the other hand, within a more practical range of V, namely for

0.2<v<0.35, the difference is less than 6%.

Some additional results for displacement loading given by (45) are shown in Tables 6

and 7. The tables show the effect of the nonhomogeneity parameter a6 and the crack

-14-



orientation 9 on the normalized stress intensity factors.

After solving the integral equations and observing that

rTn(s~ds It. -

- 1 = " ' n -'nil(r)J 1i"r (53)

the relative crack surface opening may easily be obtained from (22), (32). and (34) as follows:

fx
u(x.+0)-u(x.-0) = g1 (t~dt =- a2 -x 2 x n AnUn 1(x/a)-a T1 n

x~ 
B. 

-, 

U ~tdt=-a- 2 ~.x. t)dt =0 a2-x2 n BnU- 1 (x/a) (54a.b)

Figures 3 and 4 show the crack opening in y direction for 6=0.5 and 2.5, respectively, where

the loading is crack surface pressure c,, and the normalized displacements given in the figures

are defined by

= - ["(x.O-%'(x.-O7' . Vo = 0o 1 (55)

The three displacements shown in eahi figure correspond to 0=0 and 0=7r/2 with 6#0. and to

a homogeneous material (6=0). It may be seen that for large values of 6 the crack opening

displacements in nonhomogeneous materials can be significantly greater than the corresponding

homogeneous values.
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APPENDIX

Expressions of the functions K1j(y~a). (ij=1.2)

3-K)0n1.i 1-0- l

(3-K Ickni 2-i~( 14-KOn I,,~ .-Q3cfl 2 jnY
4c jK- 1 )-o - f 3  Q(-f 1 e }

e :)- )C II 1-ii-K)n1  14pjf1 1  n2 e

4u, ;- I o-2 1 2 vik4 )

... ............ 1 -K)( fl11 -iof 4 j )en2Y

4(j 0 L 3 2 -iO(3-K)f 2 2 1ef1

a-JL-in 2rni . f3 1- ia(3- K)f 2jlen2 }

~"2 v~c = { ~ ( 1-K)(f 1 2 -if~f4 2 )e 1

4-'21 1-¶-K)(f 1 1 .ickf 4 j)e )~

-C 1 mj-n' 2 )(ný-rn'4 )(njn2-ý-n 3 n4 ) + (M 1 -M4 )(m 2 -m 3 )(n 2 n3+njn4 )

- (mj-n13 )AM2 -M4 )(njn 3 +n 2 n4 )

where ýy. inl. n,1 and fjk are given by (2). (11), (13), and (24), respectively.
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Table 1. The effect of :he nonhomogeneity constant a- on the stress
intensity factors; -=0.3, p 1 (x)=-:0 P2(x)=O, ki(+a)=
k i(+a)/-oVa .

= -/2 (k 1 (-a) = k1 (a), k 2 (-a) = -k2 (a))

a. 0.1 0.25 0.5 1.0 2.5 5.0

S1(a) 1.008 1.036 1.101 1.258 1.808 2.869

k(a) 0.026 0.063 0.129 0.263 0.697 1.567

- = 0 (k 2 (a) = 0, k,(-a) = 0)

k1(a) 1.023 1.053 1.103 1.189 1.382

k (-a) 0.975 0.936 0.871 0.757 0.536
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Table 4. The effect of on the stress intensitv factors; a-0.25, =-/2,

k i I ' O' O,)s

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Pl tx 09 -,(x) = 0, (kl(-a) = k 1 (a), k.(-a) = -k2(a))

k1 (a) 1.026 1.025 1.030 1.032 1.032. 1.036 1.039 1.042 1.04'

k•(a) 0.065 0.065 0.065 0.065 0.065 0.063 0.065 0.065 0.065

-0,K -D ((a), (-(-a)a= k(a))

(a) -0.063 -0.063 -0.063 -0.063 -0.062 -0.062 -0.062 -0.062 -0.062

K,(a) 0.995 0.99: 0.996 0.996 0.997 0.998 0.999 1.000 1.001

Table 5. ThE effect of and the loadinZ conditions on the stress intensity

factcrS; a 2.:, = -,. a('a) = k (+a)/(Tj, : )ýa

0.05 0.1 O.5 0.2 0.25 0.3 0.35 0.4 0.45

p1(x) = - Q, p(x) = 0, (l(-a) = k(a), k2 (-a) = k2 (a))

k (a) 1.67- 1.696 1.720 1.747 1.776 1.808 1.843 1.882 1.927
r
K,(a) 0.6-5 0.6S- 0.689 0.691 0.694. 0.697 0.700 0.703 0.705

:0= - 1::a, p,(x_ 0, (kl(-a)=-kl(a), k,(-a)=k(a)

S (a) 0.E33 0.63S 0.643 0.649 0.656 0.663 0.671 0.680 0.690

2 (a) 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.090 0.091

Pl(x) = -2x!'a-, 2 (X) = 0, (kI(-a)=K1 (a), K2 (-a)=-K2 (a))

K (a) 0.668 0.674 0.680 0.687 0.694 0.703 0.712 0.722 0.733

(,(a) 0.17L 0.174 0.175 0.175 0.176 0.176 0.177 0.177 0.178

P1 (X) = 0, p 2 (X) = -70 (k1(-a)-k 1 (a), k2 (-a)=k 2 (-a))

k1 (a) -0.405 -0.404 -0.402 -0.400 -0.399 -0.397 -0.395 -0.392 -0.390

k (a) 0.989 0.996 1.003 1.011 1.019 1.028 1.038 1.048 1.060

Pl(x) = 0, P2 (x) -: 1x/a, (K1(-a)'kl(a), k2 (-a)m-k 2 (a))

k (a) '-0.020 -0.020 -0.020 -0.020 -0.021 -0.021 -0.021 -0.022 -0.022

;,(a) 0.527 0.528 0.529 0.531 0.532 0.533 0.535 0.537 0.539

P1 (x) = 0, P2(X) =--2 x/ai, (k 1 (-a)=-k 1 (a), 22 (-a)-K2 (a))

K (a) -0.106 -0.105 -0.105 -0.104 -0.104 -0.103 -0.103 -0.102 -0.102

K(a) 0.499 0.501 0.503 0.505 0.508 0.510 0.513 0.516 0.519
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Table 6. Normalized stress intensity factors for "uniforL' strain"

(x, 0 away from the crack region;

K =E £ 'a
0 00

ka) (-a)/K k2(a)/K k(-au/K0 1 0 00

0 1.196 0.825 0 0

0.1 1.081 0.750 -0.321 -0.254
0.2 0.781 0.548 -0.514 -0.422

0.25 0.3 0.414 0.290 -0.504 -0.437

0.4 O."2" 0.075 -0.304 -0.282

0.5 0 0 0 0

0 1.424 0.674 0 0

0.1 1.285 0.617 -0.344 -0.213

0.2 0.925 0.460 -0.548 -0.365
0.5

0.3 0.490 0.247 -0.532 -0.397

0.4 0.!46 0.059 -0.314 -0.269

0.5 0 0 0 0

o 6.317 0.115 0 0

0.1 5.376 0.117 -0.867 -0.037

0.2 3.315 0.115 -1.155 -0.090
0.3 1.441 0.082 -0.900 -0.158

0.4 0.369 0.004 -0.429 -0.179

0.5 0 0 0 0
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Table 7. Normalized stress intensity factors for "bending" away from

the crack region; -=0.3, Cy£yi (xl,+) = F1 Xl, KI = E 1Ei• a

.;a k (a)/K 1  k (-a)/K1  k2 (a)/K k2(-a)/K

0 0.637 -0.391 0 0

0.1 0.5-2 -0.340 -0.174 0.111

0.2 0.11- -0.217 -0.232 0.158
0.25 0.3 0.11S -0.088 -0.160 0.121

0.4- 0.01• -0.014 -0.049 0.042

0.5 0 0 0 0

0 0.809 -0.304 0 0

0." 0.683 -0.268 -0.214 0.087

0.2 0.397 -0.178 -0.278 0.1280.3

0.3 0.139 -0.076 -0.184 0.105

0.4 0.018 -0.013 -0.053 0.039

0.5 0 0 0 0

0 4.982 -0.039 0 0

0.1 3.929 -0.039 -0.898 0.012

0.2 1.880 -0.037 -0.968 0.024
2.5 0.3 0.486 -0.028 -0.480 0.033

0.-. C1.0-3 -0.009 -0.094 0.023

0.5 0 0 0 0

-25-



Fis. Crssk ceo7-ezrv in the nonhomogeneous r~ediur
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kk1 (+a)

*2

k 2 (-a)

C.5
0-

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 2 Variation of the normalized stress intensity factors with the
crack orientation in a nonhomogeneous medium containing a uni-
formly pressurized crack, a5Ul.
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x/a

Fig. 3 Normalized relative crack opening in y direction for a8-O.5,
---O and :-=-2 and for a homogeneous medium (I-O) (see Eq. 55).

-28-



V e o

6. 0

I= I•

-1.0 -0.5 0.0 0.5 1.0

x/a

Fig. 4 Normalized relative crack opening in y direction for a62.5,
1-0 and ý=-/2 and for a homogeneous medium (6-0) (see Eq. 55).
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